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Abstract

This paperinvedigatesthe impactof vehicular trajectory completeness carfollowing (CF)

model calibration and validatioynthetic data witldifferentlevels of trajectory completenegss

i.e. different number of driving regimegenerated from carefully dgeed numerical experiments
aremainly usedo calibrate and validathe Intelligent Driver Model (IDMpandtheNe we |l | 6 s CF
model Model calibration results suggest thabme driving regimes in a trajectory impact
calibrationerrorsand the particular regime and its exact impaet modelspecific, e.g.the

presencef the standstill antheabsence ofhecruisingr e gi mes 1 mpacts | DM an
model calibration errors, respectively. Howeuexel of trajectory completeess has no impact.

The acceleration behaviour of IDM drivers in differeniving regimes is determined by more

than one parameter, i.e. a eleone mapping between the parameters andrikieng regimesdo

not exist.On the contraryforNe we | | 6 s the€rEexisisa dnetd-gnemappingbetweerthe

cruising regime anthedesired speedrurthermore, level of trajectory completeness impkiuté

and N eGFenbdel&aidation. More specifically, the average calibrated parameters obtained
from more complete trajectories performs bettevalidationand leads to smaller validation

errors Thesdindingscanhavea profound impact ohow future research on GRodel calibration

and validatiorusing trajectorieshould be planned and implemented
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1. Introduction

Carfollowing (CF) models dscribe the longitudinal interactions of vehicles underoustraffic
conditionsrangingfrom freeflow (FF) to congestionseeSaifuzzamarand Zheng2014)for a
review). Traffic flow modellers examinamo d e | 6 s af degcabbgiahdiegtimang these
longitudinal interactions throug@F modelcalibration and validationFor a specific site, he
calibration aims to estimate the mogerameters that minimesthe disparity betweehe model
outputs andherealworld measurement&n the other hananodelvalidationassesse$e degree
to which the calibrated modeb outputs representhe realworld CF measurementtaken
independentlat the studysite.

CF model calibratiomssueshavebeenthe interest ofesearchn the recent literaturel opics that
have been investigated include comparing and setgtteasure of performan¢®loPs) (Kesting
and Treiber, 2008; Ossen and Hoogendoor@830Punzo et al., 2012; Punzo and Montanino,
2016; Punzo and Simonelli, 2005; Treiber and Kesting, 20f®ajdneswof-fit (GoF) functions
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(Ciuffo and Punzo, 2010; Punzo et al., 20E2)doptimisationalgorithms QAs) (Li et al., 2016;
Punzo et al., 2012)Several ther aspects ofhe CF malel calibrationare also investigated,
including model sensitivity analysi§Ciuffo et al., 2014; Punzo et al., 2015ampling issues
(Treiber and Kesting, 2013adational parameter boundBunzo et al., 2015)and calibration
approach(local or global)(Treiber and Kesting, 2013dn addition, the impact ofoise (data
noise and data completeness are the two facets of data quatitg)eictory dataon CF model
calibrationhas also been studié@ssen and Hoogendoorn, 20R8areview of recent studiesn
CF model calibratioms summarised in Appendix 1

Despite itcritical role in CF model development and implementation, GBehvalidatiorissues
arelargelyignored in the literature with a few exceptiosacks et al(2002) emphasied the

importance oflata qualityn CF model validationNi et al.(2004)pointed outhe ineffectiveness

of regular statistical testim validationin some caseée.g. when samples are correlateaid

proposed a simultaneous statistical inference technique taiestd e | 6 s accuracy an
in validation Punzo and Montanin(2016)suggestedisingcumulative variable(e.g.,spacing

as MoPin CF model validationMoreover Antoniou et al(2014)presengéda nice discussion on

the GoF selectionin validation andresearch needs.

Although significanprogreson CF model calibratiofand validatiorto a lesser extenk)es been
made thanks tdhe efforts mentioned above, @amportantissuewhose importance has been
mentioned in the literaturéHoogendoorn and Hoogendoorn, 2010; Ossah ldoogendoorn,
2008b; Punzo and Simonelli, 2005; Treiber and Kesting, 20i8&aps yeto be comprehensively
investigated igdata completenegbiereontrajectory completenessince trajectory data are the
most commonly used data fdeveloping &CF mode). The present study fills this research gap

Trajectorycompletenesgefersto the amoat of informationcontainedn atrajectory. A trajectory

is complete if it constitutes all the driving regimes a driypically experienceduring the course

of driving. Driving regimescan be dividednto two clusters namely,FF sectionand CFsection

The former includedree acceleratioand cruisingegimes while thelatter includes accelerating
behind the leadethereonacceleratiohy decelerating behind the lead@rereondeceleratioh
steadystate following(hereonfollowing), and standing behind the lead&ereonstandstil)
regimesAs trajectory data play a critical role in CF model calibration and validation, the amount
of information in the trajectory data can significantly influence the reshiegber and Kesting
(2013a)in their preliminary effort reported that if the regime relevara parameter is missing
from the trajectory datanundesirable valuef the parameter is likely to be estimated in model
calibration Using the sensitivity analysif?unzo et al. (2015also concluded thakonger
trajectories with different driving regimes should be preferred for model calibraiotine best

of the authorsé knowledge, no other study has

This paper comprehensively investigates the impact of trajectory completeness on CF model
calibration and validatiorSpecifically, this study aims to answer two fantental questions: i)

Is there any impact of level of trajectory completeness on CF model calibration and valjdation?
and ii) Does a on&-one mapping exist between driving regimes and model paraméteosCF

models namely, Intelligent Driver Model (IDMTreiber et al., 2000 nd Newel | 6s CF
(Newell, 2002)are selected for the demoradton becausd DM and Newel |l 6s CF
frequently used in the literature and they are distinctively different from each other.

This paper is organised as follows: Section 2 presents the background of CF model calibration and
validation; Section 3 details the data used in this study; Section 4 descrit®génemental
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designs to generate synthetic data using IDM for the eigleislexf trajectory completeness
considered in this study; Sectiorabd 6 scrutinizéhe impact of trajectory completeness on IDM
and Ne wmdbdéldalbratiGriand validation, respectivelection Metails IDMcalibration
using real data and relatedsues;Section 8 presents the discussiamd finally Section9
summarigs the main conclusions of ttggidy,and provides recommendations for appropriately
calibratng and validating a CF model.

2. Background

2.1 Calibration

The CF model calibratiorprocesstypically has to considethe following five elements: data
quality, calibration approach (global or loc&)oP, GoF, andoptimisationalgorithm (OA). More
specifically, the difference or error in calibration is measured by @o&a multidimensional
vector of simulated or observed variables of interesstid in the GoF function is referred to as
MoP. Each evaluation of GoF is carried out either globally or locally, and since the calibration is
essentiallyan optimisationproblem OA is neededo find a solution that is or close the global
minimum of the GoF functionResearchers often tre@F model calibratioras anonlinear
optimisationproblem that can be either solved by conventional optimisation algorithms or by
machine learningnethodgCiuffo et al., 2008; Ma et al., 2007; Punzo and Ciuffo, 20@%eneral
formulation of theCF model calibratioproblemis as follows:
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wherg is a vector of CF model parameters (number of parameters can change depending on the
CF model adopted) to be calibratédD is a function of , which is calculated after simulating

CF model,0 6 and“Y& represent the lower and the upper bouratstiie parameters in,
respectivelyd € 0 and0 € 0 represent observed asinulatedMoP, respectively;QQ is
GoF,and™Q0 ¢ 0 ) € 0 s theobjective function The aim of CF model calibration is to
minimise™Q0 ¢ 0 R é 0 . Furthermore, researchers often test the efficacy of a particular
calibration setting (a combination of MoP, GoF, and OA) before formally calibrating a CF model
(Saifuzzaman et al., 2015Jhe importance of this step has been reported in previous studies
(Punzo et al., 2015, 2012)he procedure to test the efficacy of a calibratsetting is

straightforward: gamine and compare the candidate options using synthetic datbgandoose
the one which resulis the lowest calibration errors.

2.2 Validation

There are two main approaches for CF model validitimamely, qualitative and quantitatigi
etal., 2004; Sargent, 20Q7)he qualitative approach involves the visual comparison of model

2Here validation stands for operational validation. Conceptual validation is another type of va(Batgent, 2007)
In the conceptual validation, the modeller investigates the theories and assumptions associated with the model as well
as its structure, logic, and mathematical relationskpsiever in the operatioal validation the modeller determines

whetherthemd el 6s out put i s ¢l ose Seebargeh(20073far b detailed distussen. vat i ons
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outputs and realvorld measurements by using graphical plStseraktudieshaveadopted visual
comparisone.g.,Abdulhai et al. (1999), Lee et al. (2001), Rakha et al. (1996), Zheng et al.,(2012)
andetc. Conclusions drawn based on this approach can be fuzzy and sulfiictival., 2004,)

In quantitative approach, trajectories are simulated using the parameters obtained from the model
calibration, and the error between the simulatedaamadher set ofeal trajectories icalculated

Moreover, statistical inferencdsased onsignificance test camlso be used to evaluate the
discrepancy between the model outputs and thewedtl measurementslhe quantitative
approactconsists of four elements: data qualBgF, MoP, and statistical testsyhich assistin
evaluating the model s reliability, robustne:
Comparedo the qualitative approach, the quantitative approach is more objective and reliable,

thus, itis the preferred approach in the literafiesting and Treiber, 2008; Punzo and Simonelli,

2005; Saifuzzaman et al., 2015; Toledo et al., 206&reon, the term validation refers to
guantitative validation unless otherwise stated.

Figure 1 displays a generabmeworkfor calibraing and validaing a CF modelbased on the
recent literatureThis framework has two main stagése preparation stagandthe performance
stage.The peparation stage primarily deals with finalising the calibration setting thed
performance stagecuses orcalibrating and validating the CF modlinterest Notethat inthe
current practice the role of real trajegtaata is limited to the performance stage only. Howeve
it is shownlater in this papethat regimes present in theeal trajectory dat@an alsoplay an
important roleatthe preparation stage.
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Figure 1 A general frameworkor calibraing and validaing a CF model

3. Data

3.1 Synthetic data

Synthetic data are preferred over real data for investigating the influence of different levels of
trajectory completeness on CF model calibration and validation. Real trajectories only contain



those driving regimes that occurred when the trajectories were collected. Also, the driving
regi mes, their 1l ength, and each regimebds st ail
detected, and cannot be controlled/manipulated. In addition, agadtries are contaminated by
unknown noise. Synthetic data (i.e., data simulated by using a CF model) do not suffer these issues.
Two primary advantages of synthetic data are thekposvledge of model parameters (ground

truth) and the flexibility of gesrating the data tailored to the research questibuas, synthetic

data have been frequently used in the literature to study various issues in CF model calibration,
e.g., theimpact of measurement errors on model calibrag@ssen and Hoogendoorn, 2008a)
comparison of thenodetbasedand simulatiorbased calibration&Ciuffo et al., 2008)testing the

influence of different GoF on calibratiq€iuffo and Punzo, 2010¥crutinizing the measure of
perfomance and comparing the efficacy of tpimisationalgorithms(Punzo et al., 2012and
investigating the dependence of parameter estimatione ci ency on t he | eader
(aggressive or timid)Monteil et al., 2014)

Note that,in this study,synthetic trajectories are generated using bbbt and Newelb s CF
model| and thanodels are calibrated and validated usingctireesponding trajectories (e.tpM

model is calibrated usingrajectoriesgenerated from IDM Ideally, in this approach the
calibration errors shall be zero because tita dre noise free and generated using the model itself.
However, if thereexist somecalibrationerrors then the sole contributors of these errors will be
thedriving regimesTherefore, calibrating and validating a model using the trajectories generated
from the model itself is a robust and reliabfgroachand ensures that calibration errors are due
to the presece or absence dfiving regimein the trajectories

3.2 Real data

This study alsousestrajectory data collectethy the Next Generation B ulation program
(NGSIM) (NGSIM, 2010) Noise and inaccuraes in the NGSIM data amell documented

(Duret et al., 2008; Hamdar and Mahmassani, 2008; Herrera and Bayen, 2008; Montanino and
Punzo, 2015, 2013; Punzo et al., 2011; Thiemann et al., Z008)eforethe reconstructed-80
data(Montanino and Punzo, 201#)which most of the noise and inaccuracies have been cleansed
are used in our analysisAs this study aims tonvestigate the impact of trajectory data
completenessn CFmodel calibration and validatipthe knowledge ofheregimespresent in the
trajectores is a prerequisite. Tus trajectorieswith different levels of completeness in the
reconstructed-80 dataare meticulously selectddr this purpose, as documentedSharma et al.

(2018) More information on this issue is presenie&ection 7

4. Experiment design

In this section, we describe in detail how IDM model is used to generate the synthetic data.
Equations (1) and (2) present the mathematical formulation of the IDM acceleration function of
thel driver.

iy (1)

O Yoo  Ghp  —

i oo 0 Y My_ ()

wherewh ,"Yi , &3 and®are desired speed of the vehiclefO, free acceleration exponent,
desired time gap O, standstill distancei , maximum accelerationi 7O , and desired
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deceleration of vehiclel 7O , respectively. Alsow is the IDM accelerationl 7O i’ is the
desired spacing ,® is the speed 7O,Ywi s

speedcband t he

4.1 General

the r el

ative velocity

| eqa d elir76 sandsYpisthe distance gap

In this study, eight levels of trajectory completenessansideredqdeeTable 1). The lowest level
of completeness consideresl ADF, where trajectories only contain three driving regimes:
accelerationA), decelerationD), and following(F), while the highest is FaCADFS (complete
trajectory) where trajectories contain all six driving regimes: free accelerg@encruising(C),
acceleration (A) deceleration(D), following (F), and stardstill (S). For each level of
completeness30 pairs (i.e. 30 leadefollower trajectoriey are generatedA group of 30
trajectories corresponding toparticular levelof completeness called asa trajectory groupgn
this study The constituent regimesd other featuras each trajectorgroup are reported in Table
1. For clarity,atrajectory belongs to a particulmajectorygroup if it consists ofll thosedriving
regimeswhich definethat group (e.g.if the group iSADFS then any trajectory in this group
containsacceleration, deceleration, following, and standdtilling regimesput not necessarily

in this order).

Table 1 Trajectory groups and their features

Levels of trajectory
completeness

Constituent regimes

Duration of

Example Figure

eachregime(s) developedusing IDM

FaCADFS or

free acceleratigreruising,

Complete trajectory acceleration, deceleration, 30 Figure 21
following and standstill
free acceleratigreruising,
FaCADF acceleration, deceleration, 36 Figure 22
and following
free acceleration
FaADFS acceleration, deceleration, 36 Figure 23
following, and standstill
free acceleratign
FaADF acceleration, deceleration, 45 Figure 24
and following
cruising,acceleration,
CADFS deceleration, following, anc 36 Figure 25
standstill
CADE cruising, _acceleration, _ 45 Figure 26
deceleration, and following
ADFSor Car acceleration, deceleration, :
followin following, and standstill 45 Figure 27
g 97
ADE accelerationgeceleration, 60 Figure 28

and following

(



2.1) FaCADFS

2.2) FaCADF
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Figure 2 Eight levels of trajectory completeness. In each subfjqlot(a) shows the

trajectories of the leader and the follower, ahat (b) shows the speed profile of the follower.



Table 2 Notationsused in describing the experiments

Notation Description Notation Description

W Leader 6s accel o Leader s spee
deceleration

W Fol | oascelerdtisn w Foll ower 6s sp

0 Time @ Maximum speed of the leade

Yo Time interval w Leaderds posi

Q Time duration of each regime Foll ower 6s po

(total simulation time divided by g
number of regimes in a trajector

group)

L e a d speedat the
beginning of acceleration or
at the end of deceleration
regime

The notations used in describing the experiments are reported in Table 2. In each of the

experimers, the bllowing rules are applied tobtainacceleration or deceleration of the leader
(Equation (3))speed profile (Egation (4)) and trajectory (Equation)®f the leader:

@ W 0 7Q
@ o0 Yo w o ®
©w o0 Yo w o0
Note that i n

7

Y0

0

3)

(4)

Yo ™ ®© Yo Yo (5)
synthetic data generation

and

constant accelerations during each time step has been adopted as shown in Equdtien (5).
foll ower 6sgeneratedjugng tDM (Eguations (1) and (2)).

A few important points considered when generating the trajectories are as f@kwmn has
been exercised to prevent the dominance of a particular regime, and thereby its impact on
calibration and validation results. This is achieved by ensuring that none of the regimes is double

in duration as compared to any of the other regiméscritical to judiciously decide the starting
t raj ecseaianysinwlgegd.e ci al |

poi nt of t he

Furthermore,d better mimic the real world driving behavipthie interdriver heterogeneity is
consideredby assurng that the model parametdil the IDM parameters except ) follow a

f ol

ower so

uniform distribution across the 30 followerBhe uniform distribution parameters (minimum and
maximum) for eachIDM parameterare: @ N ¢ gho & , "YW 1@hc, i N vhp 1 ON

M ® , anddod T ® . The assumption of IDM parameters followiagniform distribution

hasalsobeen adopted previougiPunzo et al., 2015)

The parameter is fixed to 4as adopted byreiber et al.(2000) For eachfollower, the IDM

parameters are randomly drawn from their respective distributions. @lsoandw follow the
same distribution, anfdr each leadexn

Next section details the experiment design of one representative case from each of the trajectory
groups. Note that all the 30 pairs of a group are generated using thexgemmendl design but

with differentIDM parameters.

is randomly drawn from its distribution.

C



4.2 Experiment design sfor generating the trajectory groups using IDM

Figure 3is a schematic of thgeneraketting of theexperiment desiggused in all the experiments.
In total, three experiment desigse adoptedto generatall the trajectory groupsasdetailed
below.

(0] Traffic signal

o
Follower Leader
jam . Vamt

oo oo <

N\

™ <« A > B > C > D >

A = Distance between the leader and the follower at the start of the experiment
B = Distance the leader traverses in FF

C = Distance the leader traverses under the influence of traffic signal

D = Distance the follower traverses in CF

Note: A, B, C, and D vary as per the regimes required in the trajectory

Figure 3 The generalsetting of theexperiment design

4.2.1 Experiment d esign for FaCADFS CADFS, and FaADFS
a) FaCADFS

At thestarto Tti, the leadeland the follower stand with a separatwfru 1T dt. The variables

ato miarew MW vuvumm@IL T TNAK,O T TA&A ,and® T T L AR

O M TAT, & M TaX . Atd pi, the leader starts to accelerate with O

T va Ti (note thatod rtandO O o 1€). The leader attain® @At ato o

and maintais it untild @ 1. From behind the follower also accelerates and attains
Cc@®arfi atd 1 U. A traffic signalis at 0 wdrt ahead ofthe| eader 6 positorur r en't
(@ o@m o mary. Importantly, the traffic signahouldbe placedin such a way that leader
hasenough time taindergofree-acceleration and cruisingrrom o @ @ the leader starts to
deceleratgand reaches the signal when the traffic light is éed ¢o 11). The leadestandsat the
signalfor a long period to ensure thite follower catches up and stops behind the leader. CF
begins with the onset of the green lighbat p ¢ ip The leader again accelerates, attains

¢ &® & fi , and maintains it. The followaalso accelerates andaintainss ¢ @ & fi. The
experiment ends & p Y inwith theleader and théollower in CF.

b) CADFS

To generat a leadeifollower couple which belongs t6ADFS, the experimenstarts(0  Tti
when the leadés travelling aiw ¢ «x fi and the follower is travellingad o T 7i.The
initial spacing between the follower and the leader is 23@Mmote, both the leader and the
follower arein the cruisingregime at the beginning of the experimant the free acceleration
regime isabsent as desiredhe remainingexperiment is the sanasin FaCADFS

c) FaADFS

When generating the trajectories for FaADRSe leaderand the follower start irthe free
acceleration regimas in FaCADFS. fie traffic signal is place¢4Om ahead othestarting point
of the leadeso thatthe leaderand the followestart decelerating ondkeyattainw ¢ Ui A
andw ¢ @ & Ti, respectively By doing s this couple of vehicles do not experiertbe
cruisingregime Therest of thenteractiongafter the traffic signalare the samas in FaCADFS.



Figures 2.1, 2.3, and B present the leadéro | | ower tr aj ec tsepedadersfleand t |
for FRCADFS, FaADFS, and CADFS, respectively.

4.2.2 Experiment design for FRCADF, CADF, andFaADF
a) FaCADF

The | earderthls e HelmVidusanatigeringial settingarethe same as in the case of
FaCADFS. The leader starts to accelerate api withcd O T1& @aTi , attainsw

¢ ® ufiatd o @, and maintains it untd x q. The initial spacegap between the leader
and the follower is 360 mThe follower starts to accelerate ¢at pi, attains w

¢ @aTl ato T ), and maintains it untd X 1. The leader starts to decelerate from

X d under the influencef traffic signal which is at 470 m from the current position of the leader.
As the leader slows down, the follower catches up and starecatedate\When the leader is at
20 m away from the signal, the signal turns gréérhis time(o p i), 0 O p W 7i.
The leademaintainsthis speedintild p t T During this period the follower ialsodriving
atv O prmii.Ato p 1 iy theleaderis 340 m ahead of the traffic signahdit accelerate
againwith® O 18 @& Zi . The follower starts acceleratingehind the leadefrom 6

p T fx, and the experiment endscat p Y it

b) CADF

To generate trajectoriesrf CADF, the experiment starts with the leaaled the followercruising
atw ¢ &afiandw ¢ @a Fi, respectivelyTherest of theexperiment is theame as
in the case of FaCADF.

c) FaADF

To generate trajectories fBRADF, the traffic signal is placed4®@0m ahead othe starting point
of the leader. This ensures the absendbeaxfruising regime from the trajectoriesncethe leader
attainsw 29 m/s it starts to decelerate due to the traffic sign@linilarly, the follower
decelerates as it reachws 30 m/s.Therest of theexperiments thesame as in the casé

FaCADF.

Figures 2.2, 2.4, and@display the leaddollower trajectories and the follond& s peed pr of
for FACADF,FaADF, and CADF, respectively.

4.2.3 Experiment design for ADFSand ADF
a) ADFS

At the stard Tti, the leader and the follower stand wahseparation gf . A smaller
separation between the leader and the follower ensures CF from the begiimeingriables at
O miarew T uvmT@RLU T TAXi, 0 T TWAK ,andw® T T W
O M TWafTi, ® m TmakXi . At 0 pi the leader starts to accelerate with O
™ pa fi . The leader attaing ¢@afiato T U and maintains it untd wTI.
There is a traffic signal at tx ahead ot h e | poaittbre(o 6 soTT @ L TOT). Fromo

w @ the leader starts to decelerate, and reaches the signal when the traffic light is ped ().
The follower starts decelerating from w1t and reaches the signal at p oiu The
experiment ends & p Y inwith the leader and the follower standiat the traffisignal

b) ADF
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To generate trajectoriesforhe case of AbDhH, tthleefloéthoeedds
same as iIMDFS except thathe experiment stogss soon athe leader and the followarrive at
the traffic signal to avoithe standstill regime

Figures 2.7 and .8 show the leaddr ol | ower tr aj e ctsspeedepsofileaford t
ADFS and ADF, respectively.

5. Impact of trajectory completeness on IDM calibration and validation

This sctionfocuses orhow different levels of completeness imp#otM calibration Before
calibratinglDM by usingthe different trajectory groups, we needdesigna calibration settig
thatincludes OA, MoP, and G0

5.1 Impact of trajectory completeness on IDM calibration

5.1.1 Selecting Measure of Performanceand Goodnessof-fit

Speed and spacing are ta@mmonly used MB in CF model calibrationResearchermebated on
which one is more suitableither by using real dat@Kesting and Treiber, 2008; Punzo and
Simonelli, 2005)pr by using synthetic dat®ssen and Hoogendoorn, 2008a; Punzo et al., 2012)
Inconsistentonclusions were report@dprevious studiesalthoughalargerfraction ofthestudies
reported favourable results for usiggacing as MP. This debate is ended byrecent study by
Punzo and Montanin@016) In this study, they first theoretically proved that the cumulative sum
of a variablds preferred over the variable itself aMaP in CF modelcalibration and validatian
Moreover they pointed out thahe cumulative sum of a variable is capable of preserving model
residuafs dynamics (a critical feateirfor CF modelling). Thus, spacinghich obviously is the
cumulative sum of speed is more robust tpeedwhen used as BP in CFmodelcalibration

and validationIn addition spacinggs super i ority over speed as
wasalsoconfirmed in their empirical analysis using the reconstruct@ dataThus,spadng is
alsoadoptedas MoPin our analysis.

For GoF, different variants osquared errors have beeommonly usedn the previous studies
(Ciuffo and Punzo, 2010; Hollander and Liu, 2008; Punzo et al., 2Bb2}his study, we adopt
theroot mean square normalised erf@MSNE) which has been preferred for model calibration
(Ciuffo and Punzo, 2010; Saifuzzaman et al., 2015; Toledo et al., .Z088)mathematical
formulationof RMSNE is shown in Equation X6

(6)
YO Y6 O -B

whered € 0 andD ¢ 0 denote the actuaind the simulateMoP atQ time steprespectively;
and0 denotes the last time stepthe total time steps
In addition,two types of calibration errors are calculaiedhis studyas defined below

(i) Percentage parameter estimation error (PPEE)the absolute relative error in percentage
between the actual parametem. the parameters used when generating the synthetic trajectories
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and the estimated parameters obtained after calibr&opumation (7 presents the mathematical
formulation of this error.

000 pTT )

whergf denotes the parameter under consideration and it cén Béi , ¢y ordy | denotes

the actual value (ground truth) of the parameter,fand denotes the estimated value of the
parameterThe term PPEEs denotes the estimation errors of all the parameters unless otherwise
stated.

(ii) Percentage fitting error (PFE): the percentage errthatreflects the fitting capability of the
CF model.Particularly PFE is the minimum value of tlabjective function obtained after the
optimisation The objective functionis calculated usindgequation (8 and the PFE&s calculated
using Equation (P

/| AE -B  —— ()

0&% EVDoQpnm (9)

where,/ Adenotes the objective functioly denotes the actual value of spacingattime
step,”Y denotes theimulatedspacing afQ time step, and denotes the last time step.

From the definitions above, it is clear tPREE emphasés the behavioural consistency between
the actual parameters and the estimated parameters while PFE is more datdNdtesémat in
the remaining paper the phrase calibration errors refer toRfeE and PFHnN this paper,te
calibrationerrordistributionsare presented using B@andWhisker plots.

5.1.2 SelectingOptimisation Algorithm

Synthesis of the literature revedtat only afew OAs have been utilised for the purpose of CF
model calibrationincludingDownhill simplex(Brockfeld et al., 2004; Oss and Hoogendoorn,
2008a) Genetic Algorithm (GAJKesting and Treiber, 2008; Saifuzzaman et al., 20Qp)Quest
Multistart (Ciuffo and Punzo, 2010; Punzo and Simonelli, 20@5y Interior point (IP{Kurtc
and Treiber, 2016)rhe comparison othefirst three algorithms bfPunzo et al. (2013howsthe
supremacy of GA and OptQuest Multistart over Downhill simplex.

A comparison of IP and GA resntedin this sectiorusingthe synthetic dataFor clarity, our
objective is to examindor a fixed starting pointwhich algorithm(GA or IP) performs better
irrespective of trajectory completene$te starting point for thisomparisoranalysisis chosen
as[25 1.5 5 2.5 2.5] for the parameted [Yi & ¢J. Moreover,two trajectory groups are
considered, ADF (less complete) and FaCADFS (complete). THeltmaring modelconsidered
is IDM, which iscalibrated using 15 trajectory pairs from each gré\po, as discussed above
spacing is adopted as MoP and RMSaH&oF.

Two performance indicatoys.e.,calibration erros andnumberof iterations areisedto compare
the performance of GA and IP. Teeor distributionsare shown irFigure4. From Figure4 (a),
overall,IP ouperforms GA in botlthe parameter estimaticandthetrajectory fitting for theADF
case Statistically, using ttest,there is no significant differendeetweerthe performance d6A
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and IPat 95% confidence levdbr the PPEE of the parameter® andi . However, significant

differenceexists forthe PPEES of remaining parameterandalsofor the PFEs. Furthermorethe
averagePPEE and average PFREe lowerin case of IP

From Figure 4 (b), overall, IP and GA perform comparably in both the parameter estimation and
the trajectory fitting for FACADFS. Statistically, exceéptandd significant difference exist for

the PPEEs of the parametets "Y andc and for the PFEs. Similar to the ADF case, the average
errors from using IP are lower.

Furthermore, IP is much more computationally efficient than GA. As shown in Figure 5, for both
the groups, IP is able to find the solution in less than 100 itesatar all the 15 followers; in
contrast, in mostasesGA needs more than 300 iterations before it conveiidesrefore, in this
study,IP is employed.
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Figure 4 Comparison otalibration errorsesulted from IP and GASubfigure (a) corresponds
to ADF and Subfigure (b) correspondsRaCADFS

The final calibration setup adopted in this study is as follows: CF model is IDM, MoP is spacing,

GoF is RMSNE, SPd) “Yi ¢l is [25 1.5 5 2.5 2.5], Lower Bound (LBR[ Yl & is [13 0
0 0 0] and Upper Bound (UB) "Yi ) is [42 10 10 8 8].
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Figure 5 Number of iterations required to find optimal parametaysADFcase b) FaCADFS
case

5.1.3 Exploring the influence of trajectorycompleteness on MoP

This section explorete influence of trajectory completeness groups on Modigh a sensitivity
analysis This is an importanbut preliminarystep of this study,becausdt can confirmthe
preliminary findings of previous studiesgaading the importance of trajectory completeness;
moreover,if there is no substantial influence of trajectory completeness groups ontMoPE
would be no need to be concerned witle impact of trajectory completeness on CHlato
calibration and validégon. A sensitivity analysis is a powerful tool that can help us to better
understand the relationship between the CF model parameters (input) and acceleration or speed
obtained from the CF model (output), determining to what extent uncertainties inptite in
parameters of a CF contribute to the variability in the output of the CF model, and identifying the
nortinfluential CF model parametef@iuffo et al., 2014; Kesting and Treiber, 2008; Punzo et al.,
2015; Punzo andiGffo, 2011; Talebpour et al., 2011)

To this endwe have performed a varianbased global sensitivity analysis of mean spacing
against two input factors namely, trajectory completeness and IDM parameters set. Note that the
second input factor is ¢hcombined IDM parameter set, and sensitivity with regard to individual
IDM parameters is not evaluated since i) similar work has been done by Punzo and his
collaborators(cited above) and ii) the primary objective of the paper is to investigate the
importance of trajectory completeness.

First, we briefly describe the varianbased global sensitivity analysis technique that is adopted

in this study. The S o-basdd Gensitivitg anhlysigbobal, f2001) he v a
determines the contribution of each input parameter of the model and its interaction to the model
output variance. This technique is based on decomptsngodel output variance into fractions
attributed to the model inputs. These fractions represent the contributions of the single parameter,
the combined effects of two or more parameters, and higjider effects. Say, a model outpoit

is given agd  "Q hd OB 81d . Here,& denotes th&) factor andvaries from 1 ta. A
variancebased firstorder effect or the main effect for the factoris given by Equationl():

w O, (10)

where & represents the matrix of all the factors exaoptO, o depicts that keeping
fixed, the mean of® is calculated for all the values ab . Moreover, the notation
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@ depicts that the variance is calculated for all the valtigs. @ he sensitivity associated with
the first order effect, called as the fiumtder sensitivity, is given in Equatiohl):

@ O, dgw (11
W W

wherew @ is the variance of the outpidand can be decomposediasd ® O, @&W
O ®, @I . The first componend ‘O, @ measures the first order effect and the

second componei® w, @I s called as the residual. The fimtder sensitivity measures
the fractional contribution @b to w & . The total effecftotal sensitivity indexi.e., the first order
effect and the higher order effects (interactions) of a factor is calculated using EgL@tion (

®, O Gl (12)

Y p

The formulationsaboveare adopted from Saltelli et al. (2010). For a detailed discussion on
computing the two sensitivities (Equatiodd)and (2)), sampling issues, sample size issues, and
other issues related to the variait@sed sensitivity analysis, referHomma and Saltelli (1996),
Saltelli et al. 2010), Saltelli et al. (2008), Sarrazin et al. (2016) and Zhang et al. (2015)

To implement the sensitivity analysis, first the input parameters are sampled from their
corresponding ranges and then model outputs are evaluated for all the generations of the input
parameters. The sample size is chosen arbitrarily at the beginning or basedulnlishegwork

on the same model. After this, sensitivity indices (i¥and"Y ) are evaluated. Next, the indices

are assessed for their stability. If the indices are not stable, the process is repeated with different
sample sizes (generally samize increases over iterations); otherwise, the process stops with
the obtainedY and™Y at the current sample size as final values. In this stiYdgnd™Y are
considered as stable"if and™Y converge to a positive value aidd Y. The variancéased
sensitivity analysis was performed using the Matlab SAFE todiRianosi et al., 2015)

In this study, the mean spacing is the model output calculated after simulating the IDM follower,
i.e., a follower generated using the IDM model. Meanwhile, the two factorsattezt MoP
(Spacing) are (i¢arfollowing interactions, whiclare reflected by driving regimes, and (ii) driving
behaviour, which igeflectedby parameters of a CF modédlhese two factors are two model

inputs. We have carried out the sensitivity asalys t o i denti fy these t wc
MoP. More specifically, the first input is the trajectory completeness group characterised by the
combination of | eaderdés trajectory and the st

the set ofIDM parametersd "Yi @ al. "Y and"Y are calculated for both the input factors
corresponding to each trajectory completeness group. Note that each trajectory completeness
group has 30 leader and follower trajectories. Thus, for each trgj@ctmpleteness group, the

first i nput i s sampled from 30 combinations o
followers, and the second input is sampled from the ranges of IDM parameters mentioned
previously (Section 4.1). Main resultstbe sensitivity analysis are summarised in Table 3.

3 https://www.safetoolbox.info/inf@anddocumentation/
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Table 3 Main results of the sensitivity analysis

Trajectory Input factors First order Total
completeness group effects {.) effects |y )
FaCADFS Trajectorycompleteness 0.52 0.59
(complete) IDM parameters 0.38 0.42
FaCADF Trajectory completenes 0.41 0.53
IDM parameters 0.53 0.59
FaADFS Trajectory completenes: 0.53 0.68
IDM parameters 0.34 0.63
FaADF Trajectory completenes: 0.64 0.74
IDM parameters 0.33 0.34
CADFS Trajectory completenes: 0.60 0.66
IDM parameters 0.36 0.40
CADF Trajectory completenes 0.75 0.78
IDM parameters 0.23 0.25
ADFS Trajectory completenes: 0.37 0.47
IDM parameters 0.47 0.61
ADF Trajectory completenes: 0.66 0.78
IDM parameters 0.20 0.36

As shown in Table our sensitivity analysis reveals that the trajectory completeness substantially
influences the mean spacing irrespective of the trajectory completenessigdaumpderscores the
findings of previous studie$orthe complete trajectory case, 59% of the variations in the mean
spacing are caused by wvariations of | eadersod
the variation of the factor itself (52%) or by interactions with IDM parameters. Stoi@iusions

can be drawn for other completeness groups. Moreover, for most of the groups, the influence of
trajectory completeness higher than IDM parameters.h@se resultlearly indicate the
importance and necessity of comprehensively expldhagnpact of trajectory completeness on

CF model calibration and validation.

5.1.4 Calibration resultsand interpretation

Fifteen leaderfollower pairs are calibratedn eachof the eighttrajectory groups using the
calibrationsettingdefined in Sections 5.1.1 and 5.1a&hdthe calibration errorsare calculated
Figure6 presents th€ PEE and PFE for each groupAs shown inFigure6, PPEES for all the
IDM parameters are zemcross all the 15 followerm ADF, CADF, FaADF, and FaCADF
trajectory groupsNotablePPEEs (as high as 30%@re observed foADFS, CADFS, FaADFS,
and FaCADFSHence regardles®f the level of trajectorycompletenesshe adopted calibration
setup iscapable ofaccuratelyrecoveringthe true model parametefsr the trajectory groups
without the standstill regimebut its performance deterioratdésr rest of the groupsSimilar
inferences can be drawn for Ps-Ee.,thecalibrationresults in zero PF&or thetrajectory goups
without the standstillregime while results in higher PEEfor those withthe standstill regime
Furthermore, comparing PPERNnd PFE for the trajectory groups witthe standstillregime
reveat anothelinteresting phenomenomhe PFE are well within theacceptable limiti.e. below
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20% (Brockfeld et al., 2004; Ranjitkar et al., 2004)g.,in the case of FaCADFS, the PFEs are
below 7% for all thel5 followers which highlightsthegood performance of the calibration setup
however, the corresponding PPE&re relatively largee.g, for FACADFSthe PPEE for the
parametei'Yare above 15 % for soniellowers

The aforementioned results lead to significant findingswith regards to IDM calibratiarFirst,
presence or absence of a driving regaoetributes to calibration erro@nd fromIDM calibration
viewpoint, standstillregime is a critical regime; and second, the parameters which minimize the
objective function (a low PFE) do not necessayiliarantee that they represent the actual driving
behaviour(a low PPEE)We define critical regime as a regime whosespnce orlasence impacts
model 6s calibration errors.

Previous studies have acknowledged four contributors to CF model calibration errors: i)
calibration settindgPunzo et al., 2012)i) intra-driver heterogeneitgKesting and Treiber, 2008)

iii) model error (Brockfeld et al., 2004; Kesting and Treiber, 2008)d iv) data noise, e.g.,
measurement erro(®ssen and Hoogendoorn, 20Q8a)

Basedon the analysis above, another important contributolDtd calibration errors is the
standstill regime. As indicated in Figuselarger calibration errors are obtained if the trajectory
groups used for the IDM calibration have the standstill regimen&kenatural question to ask is
why the standstill regime contributes to calibration errdre following paragraph answers this
guestion.
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Figure 6 Calibration errors for each of the trajectory graups

As calibrationessentiallyis anoptimisationprocess, the inability dhe optimisationprocedureo

find the global minimunof the objective functioteads to calibration errorghe failure of finding

the global minimum of the objective function can be causethépon-existenceof the global
minimum either in the given range or in the entire domain of the objective function. To explore
this, a straightforward way is to plot tle®ntourof the objective functionagainstthe model
parametersvithin the feasible regiarFor the purpose of illustratigmontours ofthe objective
functionsareplotted against and®for two trajectories, one taken from the ADfoup(without
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the standstill regimepnd the other frotihe ADFS group(with thestandstill regime). Theontour
plots for the objective functions correspondin@toADF trajectory andan ADFS trajectory are
displayed m Figures 7(a) and(b), respectively. Fothe ADF trajectory a distinctive global
minimum can beobserved(seeFigure 7a)). Note that the parameters values obtained after
optimisation are exactly the same as the ground truth valiessofica
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Figure 7 Contourplotsof two objective functionsa) The ADF trajectory b) The ADFS
trajectory

In contrast for the ADFS group the objective functiomontourhasa plateaunearthe mid-range

of i (seeFigure (b)), and lacks a distinctive global minimumu®tothe phteau, anumber of
solutions can exist (local minima). Therefore, for the trajectories tivéstandstill regimeit is

much more difficult for amptimisationalgorithm to converge to the global minimum even if the
global minimum existsand thus leads tosubstatial calibration errorsThe finding thatthe
presence othe standstill regime in the trajectory leads to calibration errors has two important
implicationson IDM calibration,as discussed below.

First, when testing the efficacy of a particulealibration setting at the preparation stagee(
Figure 1), synthetic trajectories without tstandstillregime sbuld be used. This ibecause the
standstill regime intrinsically contributes to calibration errors, and using trajectories with the
standstl regime instead will make it difficult to distinguish whether the calibration errors are due
to an inappropriate calibration setting or the presence of the standstill regime.

Meanwhile, CF model calibration using trajectory data is useful in assessil@d model 0 s
capabilityof descriling local traffic dynamics, andhe CF model parametés s e n iuffoi vi t y
et d., 2014; Kesting and Treiber, 2008pepending on the magnitude of PFEs, different
conclusions can be drawn onhether the CF model casatisfactorily capture local traffic
dynamicsand whether CF model outputs are sensitive to a parameter. ésrshiown in Figure

6, for the trajectory groups with the standstill regimme PFEsalways existstangng from 2% to

6%. Therefore, before interpreting the PFEs simeuldiook at the regimes present in the trajectory
datato make sure whethéne PFE ispartially contributed by the standstill regime present in the
trajectoryor not

5.1.5Relationship betweenthe driving regimes andthe parameters ofIDM

After understanding howriving regimes influence the model calibratiae nextinvestigate the
relationslip between the regimes atfie model parameters. Specifically, a eloeone mapping
between the regimes and the IDM parameters is investigated in this s€beoregimes and the
parameters are in a ot@one mappingif the acceleratiofehaviourin a particular regime is
governed by a single parametSuchoneto-one mapping is desirabheainly because athetwo
reasondelow.
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a) In aoneto-one mapping, the changes in one parameter will litéecor no impact on the
other parameters. Hence, the parameters corresponding to the missing regimes can be fixed
duringthe calibration process withourtitroducing any significant biaa estimatng other
parameters.

b) A oneto-one mapping can ensure thihe model parameteestimatesare uncorrelated.
Thus an independent distribution for each parameter can be assumedsimtegion

One of the features that distinguish IDM frananyother CF models is that each paramefer

IDMi s designed to describe a dri ver,asrepatedc el er 8
in Treiber and Kesting (2013alMore specifically among IDM parameterso corresponds to
cruising,wcorrespond$o freeaccelerationi corresponds to standstill reginigcorrespondso

following, andccorresponds tdeceleratior{Treiber and Kesting, 2013a, 2013Bhe aimof this

section is to investigate whether theréeedexists suchoneto-onemappingbetween the regimes

and the IDM parameters.

(a) The relationship between the driving regimes and the IDM parameters

A straightforward wayto scrutini® this oneto-one mappingis to compae the calibration
performancsof two modelsanincomplete model in which we onone of the parameters from
thelDM acceleration function, anithe complete mode(the originallDM).

Because of the standstill regimeb6s cridfon cal r
the purpose of demonstration which corresponds to the standstill regirm@mitted to make

IDM incomplete. Furthermorgny trajectory group in whicthe trajectories lackhe standstill
regimecanbesedd o compare the compl et e animcalibratoro mpl et
The ADF trajectory group is utilised in thegment casdf there exist a oro-one mapping then

the calibration performance of both the models will be comparable.

Using the same calibration setup as mentioned bafeeompletéDM and the incomplete IDM
are calibratedThecalibrationerrors arelepicted in Figug8. It is evident from the figure théte
calibration errorsare substantiallyincreased forthe incomplete model compared with the
calibration errors fothe complete modelhe median values of the PP&fRr the parameters Y
andoware more than 50%r theincomplete modelMoreove, the difference between tleerors
obtained from the two modeige tested statistically, which reve#iiat @ 95% confidence level
boththe PPEEs and the PFEs amgnificantly differentoetween the copiete and the incomplete
models These findinggmply thatthe parametdr contributes to the IDM acceleration lasfour
in more than one regime, atithtaone-to-onemappingoetweeni andthestandstill regime&oes
not exist

Resultabove implies the neaxistence of a ont-one relationship between the IDM parameters

and the regimes. Particularly, the acceleration behaviour of the IDM drivers in a particular regime

is governed by the interaction of more tloare IDM parameter. This is contrary to what has been
reported inTreiber and Kesting (2013a) né. the meaning of its five
each relates to a certain driving regime: The desired spasdelevant for cruising in fre@affic

conditions, the desired time gaypertains to steadstate caffollowing, the minimum gap to

creeping and standing traffic, and the maximum acceleréimmd desired decelerationrelate

tononst eady traffic flowd (although t heayd™Yo repc
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Figure 8 Comparison of calibration errors betwddecomplete(ComModel in the figureand
theincomplete(IncomModel in the figureinodelfor ADF.

A behavioural explanation of this phenomenon is presented in theawiin.

(b) Understanding IDM A O E Odceaiération behaviour

A driver generallyaims to driveapproximately athedesired speedVe definethedesired speed

as the maximum speedriver canattainin FF.Whenadriveris in FF, there is no hindrance to

the driver and he/she can easily accelerate to attain his/her desired speed and then maintain it.
Whenthe driver isn CF,thed r i vattemit ®© reacthedesired speed is hindered by teader
howevert h e dr iobattaintbhgthealésined speeemainsunchangedHence, in eithecase

thed r i vaeceldyagion should at least be a functioa nbrrinteraction term which constitutes
thedr i ver 60s auldeasiredsspeed dnd an interaction tefihe noninteractionterm
model s the driver éds ai mwhileahe amteraction termhmodels the r d e
hindered acceleration behaviour of the driver. Therefore, acceleration indfgely determined

by the norinteraction termwhile accelerationn CFis related taboth the terms fteraction and
norrinteraction).Refer to Equatioifl3) where the IDM acceleration function is rearranged as per

the aforementioned structure.

W (13

& YR Y bp — &

For IDM, the relative weight of each terdependonthed r i v er 6 s thelwena dsppeeifesd ,
andthe spacing between the leader and the follower

To validate theabove mentioned r i \behavibsgranothemumerical experimens performed

In this experimentiwo groups of vehicle trajectories are generated, and each groGp ressler
follower pairs Trajectories in ne group belong tcADF (only CF section), which is generated
using the methodologyescribed in &ction 42.3, andtrajectories in the other group belong to
FaC (only FFsection) groupwhich is generated usirige FaCADFSexperimentescribed in the
Section 42.1but the experimenonly runsuntil the end of cruising regim&igure9 shows the

f ol | cspeedrpeofiles of botthe groups Also, when generating the ADF trajectories (Figure
9 (a)) extra caution is exercised to ensure that the followers never attain the desired speed.
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