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Abstract 

This paper demonstrates the capabilities of wavelet transform (WT) for analyzing important 

features related to bottleneck activations and traffic oscillations in congested traffic in a 

systematic manner. In particular, the analysis of loop detector data from a freeway shows that the 

use of wavelet-based energy can effectively identify the location of an active bottleneck, the 

arrival time of the resulting queue at each upstream sensor location, and the start and end of a 

transition during the onset of a queue. Vehicle trajectories were also analyzed using WT and our 

analysis shows the wavelet-based energies of individual vehicles can effectively detect the 

origins of deceleration waves and shed light on possible triggers (e.g., lane changing). The 

spatiotemporal propagations of oscillations identified by tracing wavelet-based energy peaks 

from vehicle to vehicle enable analysis of oscillation amplitude, duration and intensity. 
Keywords: Wavelet transform; Freeway bottleneck; Transition; Traffic oscillations 

 

1 Introduction 

Empirical studies of congested traffic often necessitate identifying key spatiotemporal 

features such as 1) bottleneck activations and spatiotemporal propagation of the resulting queues, 

2) start and end times of phase transitions, and 3) origin and propagations of oscillation waves 

marking decelerations followed by accelerations. Researchers have developed several different 

techniques to investigate these features; these range from automated algorithms to process large 

amounts of data (Ban et al. 2007; Chen et al. 2004) to more manual methods to enhance the 

accuracy (Mauch and Cassidy 2002; Mu oz and Daganzo 2003). However, these techniques 

have noticeable limitations in terms of accuracy, efficiency, and/or reproducibility because of the 

noise in traffic data. Moreover, different techniques are employed depending on the features of 

interest, and thus a general tool to analyze all of the aforementioned features without 

compromising performance is desirable. Our study shows that WT (Daubechies 1992) is a 

powerful tool that is capable of analyzing the key features of congested traffic and addresses the 

shortcomings of existing methods. 

WT is a time-frequency decomposition tool that is particularly effective in extracting local 

information from non-stationary time series. Unlike the Fourier transform (FT), WT provides 

both frequency (called scale in wavelet terminology) and time representation. Any local changes 

can be captured by moving the wavelet location and squeezing or dilating the wavelet window. 

Such a time-scale representation of the original time series data, which are often noisy and 

aperiodic, finds enormous applications in fluid mechanics, engineering testing and monitoring, 

medicine, finance, geophysics, network operations and other fields (Addison 2002; Crovella and 

Kolaczyk 2003).  

WT has also been introduced to traffic engineering and intelligent transportation engineering. 

Combined with data mining techniques such as clustering, fuzzy logic, neural network, WT has 
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been adopted to investigate various traffic-related issues, such as automatic detection of freeway 

incidents (Adeli and Samant 2000; Ghosh-Dastidar and Adeli 2003; Karim and Adeli 2002; 2003; 

Samant and Adeli 2000; 2001), traffic features around freeway work zones (Adeli and Ghosh-

Dastidar 2004; Ghosh-Dastidar and Adeli 2006), traffic flow forecasting (Boto-Giralda et al. 

2010; Jiang and Adeli 2005; Xie et al. 2007), and traffic pattern recognition (Jiang and Adeli 

2004). These pioneering studies have demonstrated the potential of WT in analyzing non-

stationary or noisy traffic data.   

The primary objective of this paper is to demonstrate the potential applications of WT in 

identifying bottleneck activations, phase transitions, and oscillation evolutions through several 

examples of empirical analysis. Towards this end, this paper is organized as follows. Section 2 

describes existing techniques to identify the aforementioned features of congested traffic and 

lists their advantages and shortcomings. Section 3 describes the theoretical background of WT 

and its adaptation to the analysis of traffic data. In Section 4, applications of WT for analyzing 

congested freeway traffic are demonstrated in detail through several case studies. Finally, 

Section 5 discusses conclusions and future research. 

 

2 Background 

2.1 Techniques to identify bottleneck locations and activation times 

The simplest method to identify bottleneck locations and the spatiotemporal propagations of 

the resulting queues is by using raw traffic data (e.g., vehicle count, time-mean speed, or 

occupancy) from stationary traffic sensors. For instance, time-series speed curves reveal sensor 

locations that exhibit low speed values due to congestion. The approximate location of an active 

bottleneck is then identified as the section between the most downstream sensor location with 

congestion and its downstream neighbor (with no congestion). However, the bottleneck location 

and the arrival time of the queue at each upstream sensor location are often difficult to pinpoint 

with reasonable accuracy because of noise in traffic data. (The count data tend to be noisier than 

speed data.) Moreover, estimations of these features tend to be subjective, which raises the issue 

of reproducibility by other researchers. To partially smooth out noise and reveal underlying 

traffic patterns, raw traffic data can be aggregated over a certain time period before developing 

specific algorithms (Ban et al. 2007; Chen et al. 2004). However, the aggregation duration is 

selected arbitrarily, and the time resolution diminishes with aggregation.   

Another widely used bottleneck analysis method is oblique cumulative curves (Cassidy and 

Bertini 1999). Cumulative curves of vehicle count, occupancy and speed are effective in 

suppressing noise, although changes in traffic patterns are not apparent due to their small scales 

relative to the characteristics analyzed. To overcome this shortcoming, cumulative curves are 

plotted with an oblique time axis (rather than a conventional orthogonal axis) to amplify 

temporal changes in traffic states. A bottleneck activation time (or a queue arrival time) is 

identified by locating a point where a sudden decrease in the slope of a cumulative vehicle speed 

or count curve occurs. This technique can smooth out the noise and reveal underlying traffic 

trends without compromising the original time resolution. However, it is difficult to entirely 

automate this procedure because one needs to adjust the degree of the oblique axis for different 

days, locations, and lanes to find the optimal degrees that best reveal traffic trends. Therefore, 

this method is time-consuming and labor-intensive, and thus unsuitable for analyzing many 

different days and locations. Moreover, the estimated event times are subjective because there is 

no objective standard to distinguish minor and major events, which raises a reproducibility issue.  
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Development of speed contours is another popular method that has been implemented in 

major archives such as the Performance Measurement System (PeMS 2008) and Portland Oregon 

Regional Transportation Archive Listing (PORTAL 2009). For a given stretch of roadway, 

traffic conditions are represented on a time-space plane by a color scheme corresponding to a 

range of speeds. Speed contours are an effective tool for preliminary analysis because they 

provide good spatial coverage and an overall picture of traffic evolution. However, it is difficult 

to determine precise event times in an objective manner.  

 

2.2 Techniques to identify transitions 

The start and end times of phase transitions during bottleneck activations are typically 

identified using raw traffic data, aggregated data, or oblique cumulative curves (Mu oz and 

Daganzo 2003; Sarvi et al. 2007), which suffer the limitations in the context as mentioned above. 

Using an empirical fundamental diagram (FD) (Mu oz and Daganzo 2003) is another way to 

analyze transitions. Raw or aggregated vehicle count (or flow) and occupancy pairs are plotted to 

obtain an empirical FD. Then the start of transition is identified as when flow-occupancy pairs 

start to drift from the uncongested to the congested branches of the empirical FD. The end of 

transition is identified as when the data points finally reach the congested branch. However, 

identifying precise event times can be rather subjective or inaccurate because of noise in the data 

and reduced data resolution.  

 

2.3 Techniques to measure oscillations 

Li et al. (2010) provide an excellent review of techniques to measure oscillations. One 

popular method in the time domain is to take the second-order difference of the cumulative data 

sequence (e.g. vehicle count, time-mean speed) with a moving time window (Mauch and Cassidy 

2002; Ahn and Cassidy 2007). The motivation of this method is to remove noises in the data and 

de-trend longer-term changes in order to quantify local variations that are believed to be 

oscillations. Li et al. (2010) demonstrated (Fig.1 in their paper) that this method is sensitive to 

the choice of window length; with an inappropriate one, periodic oscillations may be dampened 

out, or Gaussian white noise may be distorted into a periodically oscillating sequence. 

To overcome the shortcomings of the aforementioned technique in the time domain, Li et al. 

(2010) employed Short-Time Fourier Transform (STFT). STFT exploits the power of FT while 

remedying its poor performance for non-stationary signals. In this method, a signal is divided 

into time segments of the same length and then FT is applied to each time segment while 

assuming a stationary signal (Leon 1995). Using STFT, Li et al. identified stationary time 

intervals and then selected a dominant frequency to measure traffic oscillation’s amplitude and 

duration in each interval. Although STFT showed a promising performance in Li et al. (2010), 

this process hinges partly on subjective judgment. For example, it is not always clear where 

stationary time intervals are located by looking at STFT-produced time-frequency plots. 

Additionally, more than one frequency is often found salient, and thus, selecting a single 

dominant frequency is not always justifiable.  

Finally, the methods developed in the previous studies are intended to analyze oscillations 

using aggregated data from inductive loop detectors rather than trajectory data.  

As we demonstrate hereon, the present study addresses the notable shortcomings of the 

existing methods to analyze important traffic features. More specifically, the merits of using 

WT-based method are: 1) it minimizes subjectivity in selecting event times, and thus the results 

are reproducible by others; 2) it enables efficient analyses of a large amount of data; 3) it 
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streamlines the analysis of congested traffic because it can be used for analyzing different 

features; and 4) it enables microscopic analysis of vehicle trajectories which tend to be very 

noisy due to driver differences. 4) is particularly notable given that propagations of oscillations 

are likely related to driver characteristics. 

 

3 Methodology: Wavelet Transform 

To overcome the inherent limitations of FT, such as sensitivity to noise and poor performance 

when applied to nonlinear problems, WT was developed in the 1980s (Daubechies 1992). A 

wavelet is a real or complex mathematical function, , that can transform continuous time 

series into various scale components. This study employs real wavelets, which must satisfy two 

basic conditions (Addison 2002): 

Condition (1):  , (1) 

Condition (2): ,  (2) 

where E is wavelet energy, which must be finite; Condition (2) implies that a wavelet must have 

a zero mean. A WT coefficient (output) of a continuous signal  is called a continuous 

wavelet transform (CWT), and its general formulation is  

 ,  (3) 

where  is a scale parameter that governs the dilation and contraction of the wavelet, and  is a 

translation parameter that governs the movement of the wavelet along the time dimension. This 

weighting function  is typically set to  to ensure that wavelets at all scales have the 

same energy.  When  and ,  is called the mother wavelet. Finding the optimal 

mother wavelet for a particular signal may have theoretical merit but is not critical in practice 

because several widely known wavelets (e.g., Haar, Daubechies, Mexican hat, Morlet, Coifman, 

etc.) are near-optimal and provide similar results for a wide variety of signals (Donoho 1993). In 

view of this, we select the Mexican hat wavelet, as defined in (4), for this research. 

  (4) 

Note from (4) that the Mexican hat mother wavelet (  and ) is the second derivative of 

the Gaussian distribution function, . The Mexican hat wavelet is one of the most widely used, 

and its shape (see Figure 1 for a = 1 and b = 0) is typical of traffic oscillations.  

 
Figure 1 

 

As an aside, discrete wavelets are typically used in other studies because they are more 

efficient than continuous wavelets like the Mexican hat wavelet and enable inverse transform to 

restore the original data with noise filtered. In this study, we weigh accuracy more than 

efficiency in identifying event times (e.g., bottleneck activation times) and do not analyze the de-

noised data through inverse transform. Thus, the Mexican hat wavelet was selected. Adeli (2005; 

2008) describes discrete wavelet transform and its applications to the intelligent transportation 

systems. 

For our applications, speed time series, , is a continuous signal function. A WT 

coefficient of  can be obtained by plugging (4) into (3): 

   (5) 
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Then, the average wavelet-based energy at b is computed based on the WT coefficients for 

different scales; i.e.,   

    (6) 

Note that Eb is computed based on T (a, b) across different scales rather than the most 

dominant scale (as is the case in STFT). This capability is the unique strength of WT and enables 

an effective analysis of non-stationary signals such as time-series traffic data. The average 

wavelet-based energy, , is dimensionless because  is dimensionless. From (6), an 

abrupt speed change over time generates a sharp increase in the temporal distribution of the 

wavelet-based energy. Thus, we can exploit the energy distribution to identify significant speed 

changes attributed to onsets and clearances of queues and to arrivals of oscillation waves.  

Of note, b is typically selected based on the time resolution of the original signal, such that Eb 

is computed at all time steps. To compute Eb, a reasonable upper bound is assigned to a for 

computational efficiency. The maximum value of  should be small enough to capture the local 

details of the original signal
2
.  

Figure 2 illustrates a sample WT application using a vehicle trajectory. Figure 2(a) shows the 

speed plot of a vehicle (source: FHWA 2008), superimposed with an example Mexican hat 

wavelet in which a = 32 and b = 8.267.  (Because the resolution of the original signal is 0.1 

seconds, an a of 32 corresponds to 3.2 seconds in the time domain.) The speed at b = 8.267 is a 

local minimum (A in Figure 2(a)), that marks an abrupt speed change by the start of an 

acceleration. Figure 2(b) shows the WT coefficients, T (a, b), computed for the original speed 

time series using Equation (5) for the entire range of b and a =32. 

The WT coefficient at A' also marks a local minimum corresponding to the abrupt speed 

change at A. To obtain the temporal distribution of the energy, the absolute WT coefficients, |T(a, 

b)|, are obtained for different values of the scale parameter a. Figure 2(c) shows the contour of 

|T(a, b)| with a ranging from 1 to 64; A'' denotes |T(32, 8.267)|. In this case, the maximum value 

of a is set at 64 (6.4 seconds in the time domain) to ensure that the wavelet window does not 

include more than one deceleration or acceleration phase. Lighter regions of the contour, such as 

the region surrounding A'', represent larger values of |T(a, b)|, which contribute to higher energy. 

Finally, the temporal wavelet-based energy distribution for the speed time series is computed 

using Equation (6), as shown in Figure 2(d). The figure clearly shows an energy peak at b=8.267 

(A''' in the figure) as well as several other peaks that can be traced back to other abrupt speed 

changes in Figure 2(a). Note that rigorous mathematical proofs of WT’s capability to detect 

abrupt changes in signals are beyond the scope of this paper. Meyer and Salinger (1995), 

Daubechies (1992), and Mallat (1999) provide mathematical details of the WT’s principles.  

 
Figure 2 

                                            
2
 Selection of the maximum value of a is also governed by the “boundary effect,” which is characterized by large 

WT coefficients at both ends of the signal range. This occurs because the signal range is finite, and the speed outside 

the signal range is assumed to be zero. Large WT coefficients are obtained at the boundaries where the signal shifts 

from zero to an actual speed value. As a increases, the boundary effect dominates the actual signal pattern for longer 

durations. Thus, the maximum value of a should be selected such that a significant proportion of the signal range is 

free of the boundary effect. An easy way to avoid the boundary effect is to extend the signal range by including 

more data and then discard the WT coefficients from the extended portions. This procedure is implemented in all the 

cases presented in this paper. 
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4 Applications 

In this section, we demonstrate non-stationarity of the data used in this study to justify the use 

of WT and three applications of WT using real data: 1) identification of bottleneck locations and 

activation times, 2) identification of regime changes, and 3) identification and measurement of 

oscillations.  

 

4.1 Stationarity of traffic data 

Stationarity of a process is characterized by constant statistical parameters, such as mean and 

the standard deviation, over time (Challis and Kitney 1991). Traffic data are often non-stationary 

due to changes in demand and bottleneck capacity, merges and diverges, and other complex 

dynamics such as lane-changing and stop-and-go driving motions. Figure 3(a) shows a typical 

speed time-series (grey circles) from the loop detector data used in this study (these data are 

described in detail in Section 4.2). The dashed and the dotted lines respectively represent the 

cumulative mean and the cumulative standard deviation. It is clear that the mean and the standard 

deviation of speed change over time, indicating that the temporal process of speed is not 

stationary. Figure 3(b) shows a typical speed time series of a vehicle from the trajectory data 

used in this study (these data are described in Section 4.3). The cumulative mean and standard 

deviation also demonstrate non-stationarity of the temporal speed. 

 

Figure 3 

 

4.2 Application 1: Identification of bottleneck locations and activation times 

A segment of US-101 (from milepost (MP) 10.248 to MP 24.552) in Los Angeles, California 

is used in this study (see Figure 4 for its schematic). Vehicle counts and occupancies were 

collected by loop detectors and aggregated every 30 seconds (PeMS 2008).  Speed at each loop 

detector is estimated based on Equation (7) (Kockelman and Ma 2007) because it is not 

measured directly:  

 

 ,  (7) 

 

where 

: the estimated time-average speed at location l and time t, 

: the vehicle count, 

: the occupancy (%), 

: the average vehicle length, and 

: the effective detection zone length.  

 

The sum of  and  is also referred to as the effective vehicle length (Kockelman and Ma 

2007), which is assumed to be 18 ft in our study. As Kwon et al. (2003) and Coifman (2001) 

show, the average effective vehicle length can change by time of day and tends to be bi-modal 

around effective lengths for passenger cars (around 20 ft) and larger vehicles (around 60 ft). 

However, because our method is designed to detect considerable temporal changes in speed, the 

accuracy of the estimated speed is not critical.  
 



7 
 

Figure 4 

 

Figure 5(a) shows time-series speed plots for ten loop detector stations between MPs 17.127 

and 26.592 of US 101 on September 1, 2009. Note that the speed plots at different locations are 

vertically separated by a factor proportional to the actual distances. The figure demonstrates the 

existence of an active bottleneck between MPs 18.567and 21.482 because the stations upstream 

of MP 18.567 exhibit substantial decreases in speed approximately from 15:00 to 20:00. 

However, the exact times of congestion onset and clearance
3
 at each station are difficult to 

determine due to noise in the data.  

Figure 5(b) is a speed contour of the same data in a time-space domain. The data were 

aggregated over 5 minutes to present a clearer pattern. In the figure, dark regions correspond to 

low speeds according to the scale given in the legend. The speed contour plot shows that the 

bottleneck activated a little after 15:30 at a location between MPs 18 and 20.  It clearly shows the 

congested time-space region although it is hard to determine the times of congestion onset and 

clearance (especially in an automated manner). Nevertheless, speed contours are a useful tool for 

preliminary analysis (e.g., isolating a segment with congestion).  

Figure 5(c) presents wavelet-based energy plots for the same speed data. Each curve shows 

the wavelet-based energy distribution at each station. The figure shows that the wavelet-based 

energy distributions are nearly uniform from MPs 17.127 to18.567, implying no state changes 

from 14:00 to 22:00. However, four noticeable energy spikes appear at the stations upstream of 

MP 18.567. Based on the energy distributions, we conclude that 1) the bottleneck is located 

between MPs 18.567 and 21.482; 2) upon bottleneck activation, the disturbance signaling the 

onset of the congestion arrived at each station at the time of the first energy spike (e.g. at 15:38 

at MP 21.482). By tracing these times at different locations (see the arrow labeled “onset of 

congestion” in Figure 5(c)), one can identify the backward propagation of the shockwave. 

Similarly, the disturbance signaling queue clearance arrived at each location at the time of the 

third energy spike. It is interesting to note that the queue clearance is attributed to 1) an increase 

in bottleneck capacity as evidenced by a backward moving shock from MPs 21.482 to 23.402 

and 2) a decrease in demand as evidenced by a forward moving wave from MPs 26.092 to 

23.402.  

We next demonstrate WT’s application in a more complicated scenario in which multiple 

bottlenecks exist on a freeway segment, and a more severe bottleneck overrides a less severe one 

upstream. Figure 6(a) and (b) respectively show time-series speed plots and a speed contour for 

nine stations between MPs 15.717 and 24.552 on October 27, 2009. Two bottlenecks can be 

identified from these figures with limited temporal and spatial resolutions. 

Figure 6(c) shows wavelet-based energy distributions for the same speed data. The first 

energy spike, signaling the onset of congestion, occurred at MP 21.482 at 6:21 and propagated 

backward to other upstream stations. We also observe the propagation of another queue from a 

second bottleneck located downstream of MP 15.717. This second shock eventually propagated 

to the first bottleneck, that is, the queue from the downstream bottleneck spilled over to the 

upstream one.  

 
Figure 5 

Figure 6 

                                            
3
 Note that the exact activation and deactivation times of this bottleneck are unknown since the exact bottleneck 

location cannot be obtained due to limitations in the spatial resolution of loop detector data. 
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4.3 Application 2: Measurement of regime transitions 

A transitional regime is observed when traffic shifts from one state to another. We focus on 

the transition from a free-flow to a congested state when a bottleneck activates. In particular, WT 

is used to identify the start and end times of a transition, which are critical to studying bottleneck 

features such as capacity drops. We demonstrate that using WT can substantially simplify the 

task of identifying transition times. 

For the example shown in Figure 5, the bottleneck is located between MPs 18.567 and 21.482, 

and the stations upstream of the bottleneck exhibit four energy spikes (see Figure 5(c)). The first 

energy spike (square in the figure) at each station represents the change from a free flow state to 

a transitional regime. The second energy spike (circle) marks the end of the transition, which 

represents the change from a transitional regime to a congested regime. Similarly, the third and 

the fourth energy spikes respectively represent the start and the end of another transitional 

regime from a congested to a free-flow state. Figure 7(a) shows the start and the end times of the 

transitions at each station and the average shockwave speeds computed based on these times (i.e., 

the slope of each trend line).  

It is notable that the shock waves propagate backward nicely and that similar average shock 

speeds (~ 7.3 mph) are obtained using the start times and the end times. Figure 7(b) shows that 

the duration of the transitional regime at each station (transition end time – start time) is 

approximately 17.5 minutes, ranging from 15 to 18.5 minutes depending on the station.  
  

Figure 7 

 

The same method can be applied to the more complicated scenario shown in Figure 6. The 

shock propagation paths and the transition durations for this scenario are shown in Figure 8. 

Figure 8(a) reveals two distinctive shock propagation paths that originated at the two different 

bottlenecks. The average shock speeds at the first (upstream) and the second (downstream) 

bottlenecks are approximately 12.6 mph and 7.7 mph, respectively, and the transition durations 

are approximately 17 minutes and 21 minutes, respectively. 

Figure 8 

 

4.3 Application 3: Oscillations 

Freeway traffic oscillations in congested traffic are characterized by recurring patterns of 

decelerations followed by accelerations. Many aspects of oscillations remain puzzling primarily 

because of limitations in data availability and analysis techniques. With recent developments in 

image processing techniques, several datasets of high-resolution vehicle trajectories (FHWA 

2008) have become available to researchers, providing an unprecedented opportunity to study 

microscopic features of oscillations. Exploiting these data, we demonstrate that WT enables 

systematic investigations of certain microscopic features including their origins and propagations.  

This study uses the vehicle trajectory data collected as part of FHWA’s Next Generation 

Simulation (NGSIM) program (NGSIM 2008). The study site shown in Figure 9 is a 2100-ft 

section on US-101 southbound in Los Angeles, California (Note that the lane numbering is 

incremented from the left-most lane). Trajectory data were collected with the resolution of 10 

records per second from 7:50 a.m. to 8:35 a.m. on June 15, 2005.   

 
Figure 9 
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Oscillation Formation 

We define an oscillation as a deceleration phase followed by an acceleration phase. Wavelet-

based energy is used to identify the origins and triggers of deceleration waves. The basic idea is 

similar to that used in identification of bottlenecks and transitional regimes; that is, any dramatic 

speed change will produce an energy spike in the wavelet frame. By tracing back to the vehicle 

with the first noticeable energy spike, the origin of a deceleration wave can be identified. 

Figure 10(a) shows vehicle trajectories on lane 1, US 101, which exhibit a formation of a 

deceleration wave. To identify the trigger of the deceleration wave, Figure 10(b) zooms in on 

trajectories around the origin. However, simply by looking at the trajectories, it is not apparent 

which vehicle initiated the deceleration wave. Figure 10(c), which shows the wavelet-based 

energy of each vehicle in Figure 10(b), reveals that the first energy peak occurred with vehicle 

2389, a follower of two lane-changers, vehicles 2376 and 2384. Thus, we conclude that this 

deceleration wave was triggered by LCM.  

 
Figure 10 

 

Oscillation Propagation 

Once the origin of an oscillation is identified, we study the propagation of the oscillation from 

vehicle to vehicle by tracing the paths of the deceleration and acceleration waves using WT. 

Again, the significant speed changes that occur upon the arrivals of the deceleration and 

acceleration waves accompany spikes in wavelet-based energy, enabling us to pinpoint the wave 

arrival times. Figure 11 shows the time-series speed (top) of a vehicle displaying oscillations 

(vehicle 1753 in the dataset) and the corresponding energy distribution (bottom). Based on the 

time-series speed, this vehicle underwent two complete oscillation cycles (a deceleration 

followed by an acceleration phase) as labeled in the figure. The time of each phase change 

corresponds to an energy peak in the energy distribution. A typical oscillation cycle consists of 

three energy peaks: 1) the arrival of a deceleration wave, 2) the arrival of an acceleration wave, 

and 3) the arrival of another deceleration wave. Thus, the propagation of an oscillation is 

identified by tracing these energy peaks for following vehicles. 

 
Figure 11 

 

Figure 12(a) shows the trajectories of a group of vehicles (including the one exemplified in 

Figure 11) that encountered several oscillations.  The figure illustrates the propagation of one of 

the oscillations by tracing the energy peaks (circles in the figure) identified from the energy 

distributions of individual vehicles. The first propagation path denotes the passage of a 

deceleration wave, and the second and the third propagation paths indicate the passages of an 

acceleration wave and another deceleration wave, respectively. Thus, these three propagation 

paths complete an oscillation cycle. Note that the slope of each path represents the wave 

propagation speed and that the third path does not always exist because there may not be another 

deceleration wave. The average propagation speeds estimated via regression are 10.54 mph for 

the first, 10.28 mph for the second, and 8.74 mph for the third path. Figure 12(b) presents the 

durations of the decelerated state for the same group of vehicles, which are estimated as the 

durations between the first and the second energy peaks. The figure reveals that the duration of 

the decelerated state is relatively stable, with an average of approximately 13 seconds. Figure 

12(c) presents the amplitude (measured as the speed difference between the first and the second 
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energy peaks). The figure reveals that the amplitude increases slightly for the first ten vehicles 

and then decreases. Finally, Figure 12(d) shows the intensity, which is estimated as the ratio of 

the amplitude to the duration. Note that the intensity measures the rate of speed decrease during a 

deceleration phase. 

 
Figure 12  

 

5 Conclusions and Future Research  

WT is a time-frequency decomposition tool that is particularly effective in extracting local 

information from non-stationary time series. Using real traffic data, this paper demonstrates the 

capabilities of WT for analyzing important features related to bottleneck activations and traffic 

oscillations in a systematic and reproducible manner. In particular, the analysis of loop detector 

data from a freeway showed that the wavelet-based energy can effectively identify the location 

of an active bottleneck and the arrival time of the resulting queue at each upstream sensor 

location. The method was also shown to function effectively in a more complex scenario with 

multiple bottlenecks. Moreover, the wavelet-based energy clearly revealed the start and end of a 

transition during the onset of a queue.  

Vehicle trajectories were also analyzed using WT. The wavelet-based energies of individual 

vehicles effectively showed the origins of deceleration waves and shed light on possible triggers 

(e.g., lane changing). The spatiotemporal propagations of the identified oscillations were then 

identified by tracing wavelet-based energy peaks from vehicle to vehicle. The identified 

propagation paths enabled analysis of oscillation amplitude, duration and intensity.  

This tool will enable systematic investigations of reductions in bottleneck discharge flow, 

various characteristics of transient traffic, and the mechanism of oscillation growth in relation to 

driver behavior and lane-changing maneuvers. Discrete wavelets may be used for these in-depth 

analyses since they are useful for removing noise and reserving underlying trends in traffic data. 

Works in these regards are ongoing. 
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Figure 1  The Mexican hat mother wavelet. 
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Figure 2 Illustration of wavelet transform and energy calculation 

(a) Speed time series with a superimposed Mexican hat wavelet; (b) WT coefficients, T(a, b), at scale a = 

32; (c) Contour of the absolute values of WT coefficients, |T(a, b)|, from scale 1 to 64; (d) The temporal 

distribution of average wavelet-based energy across scales. 
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Figure 3 Illustration of non-stationarity of traffic data 

 (a) A typical speed time series from PEMS loop detector data (average over lanes, MP 21.482, US 101, 

October 27, 2009); (b) A typical speed time series of a vehicle from the NGSIM trajectory data (lane1, 

US 101). 
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Figure 4 Schematic of US 101, MP 15.717 – MP 26.592 (Unit: miles). 
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Figure 5 Identification of a bottleneck, US 101: September 1, 2009 

(a)  The raw speed plots; (b) The speed contour; (c) The wavelet-based energy distribution. 
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Figure 6 Identification of bottlenecks, US 101: October 27, 2009 

(a) The raw speed plots; (b) The speed contour; (c) The wavelet-based energy distribution. 
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Figure 7  (a) The start and end times of the transition on September 1, 2009; 

(b) The duration of the transition on September 1, 2009. 
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Figure 8 (a) The start and end times of the transition on October 27, 2009; 

(b) The duration of the transition on October 27, 2009. 
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Figure 9 Schematic of a 2100 feet section of US 101. 
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Figure 10 Example of an oscillation formation due to lane-changing maneuvers (lane 1, US 101) 

(a) Vehicle trajectories displaying a noticeable decelerated state; (b) Vehicle trajectories near the origin of 

the deceleration wave; (c) Temporal wavelet-based energy distributions of the vehicles near the origin of 

the deceleration wave. 

 

 

8.015 8.02 8.025 8.03 8.035 8.04 8.045
0

500

1000

1500

Time (Hours)

S
p

a
c
e

 (
ft
)

Time 

S
p

a
c
e

Time

W
a

v
e

le
t-

b
a

s
e

d
 E

n
e

rg
y
 (
u

n
it
le

s
s
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

2373

2376
2384

2389

2391

2394

2401

2405

2411

2417

2418

2423

2432

2444

2462

2431

Lane-changer

Direction of 

waves

Lane-changer



 
 

Figure 11 Illustration of oscillation measurement. 
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Figure 12 Example of an oscillation propagation on lane 1, US 101 (from 8:14 to 8:17 a.m.) 

 (a) Vehicle trajectories with three wave propagation paths identified using WT; (b) Oscillation durations 

measured based on the identified wave propagation paths; (c) Oscillation amplitudes; (d) Oscillation 

intensities. 
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